인공지능개론

뉴럴네트워크

- A neural network is a mathematical model inspired by biological neural networks
 - Intelligence comes from their connection weights
 - Connection weights are decided by learning or adaptation

Category

Dog

Cat

Pig

Chicken

Eagle

Bug

Dragon

96	255	7	45
4	0	8	27
186	102	85	86
211	45	37	189

A neural network is a mathematical model inspired by biological neural networks

- Intelligence comes from their connection weights
- Connection weights are decided by learning or adaptation

Single neuron model

Single neuron model: Input / Weight / Activation / Bias

Neural networks: Input layer / hidden layer / output layer / Bias

$$a_i^{(j)} =$$
 "activation" of unit i in layer j

$$\Theta^{(j)} = \operatorname{matrix}$$
 of weights controlling function mapping from layer j to layer $j+1$

$$a_{1}^{(2)} = g(\Theta_{10}^{(1)}x_{0} + \Theta_{11}^{(1)}x_{1} + \Theta_{12}^{(1)}x_{2} + \Theta_{13}^{(1)}x_{3})$$

$$a_{2}^{(2)} = g(\Theta_{20}^{(1)}x_{0} + \Theta_{21}^{(1)}x_{1} + \Theta_{22}^{(1)}x_{2} + \Theta_{23}^{(1)}x_{3})$$

$$a_{3}^{(2)} = g(\Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3})$$

$$h_{\Theta}(x) = a_{1}^{(3)} = g(\Theta_{10}^{(2)}a_{0}^{(2)} + \Theta_{11}^{(2)}a_{1}^{(2)} + \Theta_{12}^{(2)}a_{2}^{(2)} + \Theta_{13}^{(2)}a_{3}^{(2)})$$

Performance function P

$$\frac{\partial P}{\partial w_2} = \frac{\partial P}{\partial z} \frac{\partial z}{\partial w_2} = \frac{\partial P}{\partial z} \frac{\partial z}{\partial p_2} \frac{\partial p_2}{\partial w_2}$$

$$\frac{\partial P}{\partial w_1} = \frac{\partial P}{\partial z} \frac{\partial z}{\partial p_2} \frac{\partial p_2}{\partial y} \frac{\partial y}{\partial p_1} \frac{\partial w_1}{\partial w_1}$$

$$\beta = \beta(1-\beta)$$
 where $\beta = \frac{1}{1+e^{-\alpha}}$

Activation function

- Sigmoid
- ReLu
- Soft ReLu

- Neural Network
 - Learn nonlinear model

XOR logic

L	ınear	can	solve	

Linear can solve

Linear cannot

X1	X2	Υ
(input1)	(input2)	(Output)
0	0	0
0	1	1
1	0	1
1	1	0

