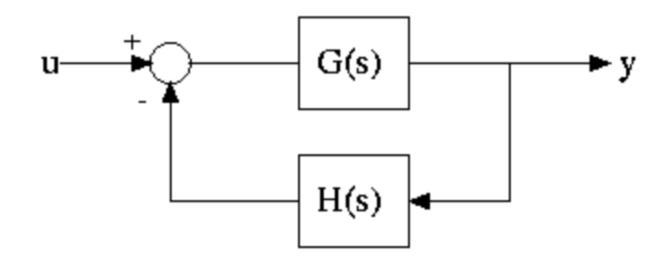
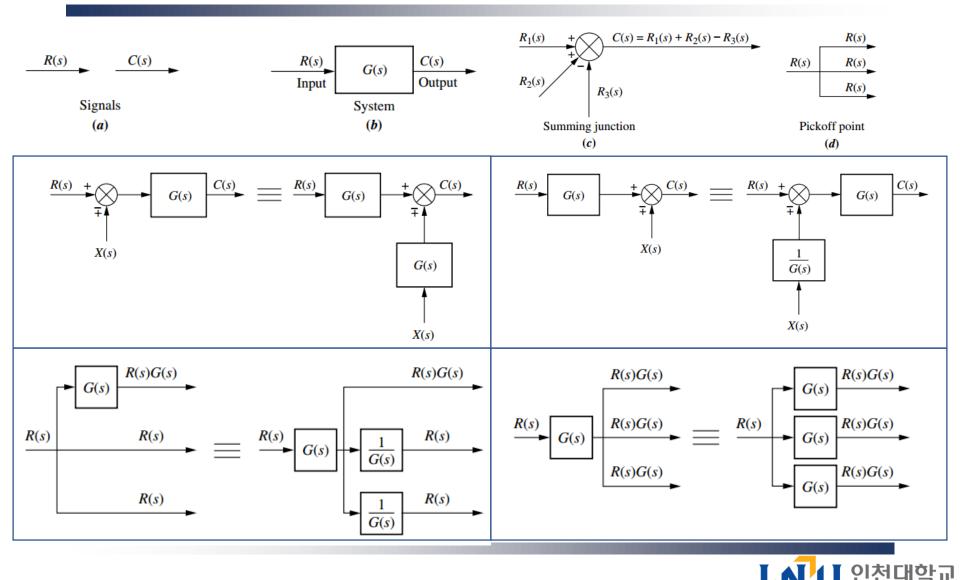
System Control

Reduction of multiple subsystems

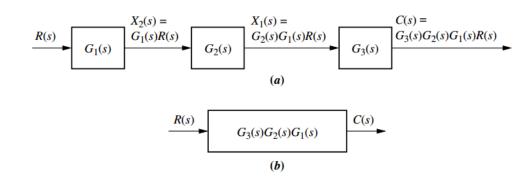


Block diagrams

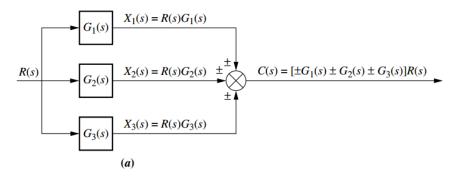


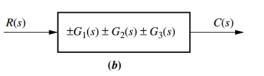
INCHEON NATIONAL UNIVERSITY

Block diagrams: cascade & parallel



$$G_e(s) = G_3(s)G_2(s)G_1(s)$$



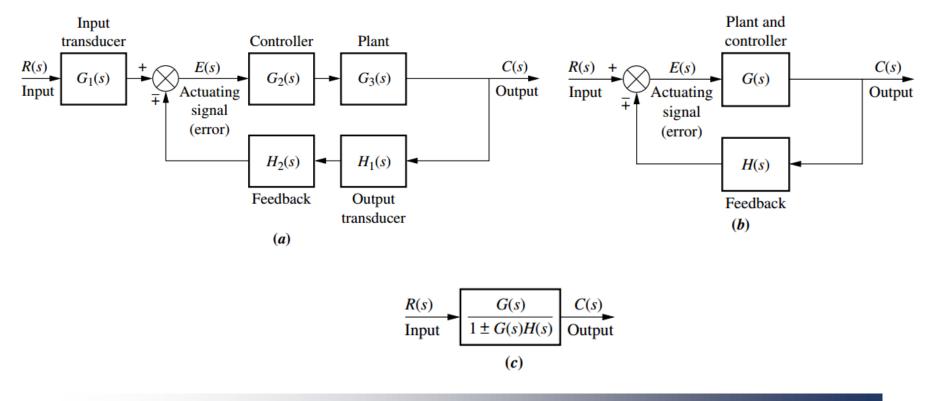


 $G_e(s) = \pm G_1(s) \pm G_2(s) \pm G_3(s)$

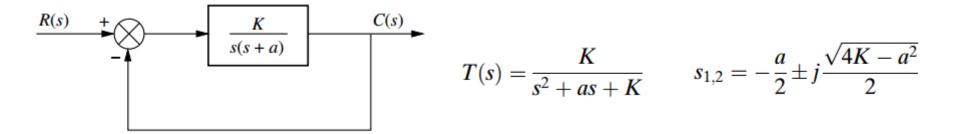
Block diagrams: feedback form

$$E(s) = R(s) \mp C(s)H(s)$$

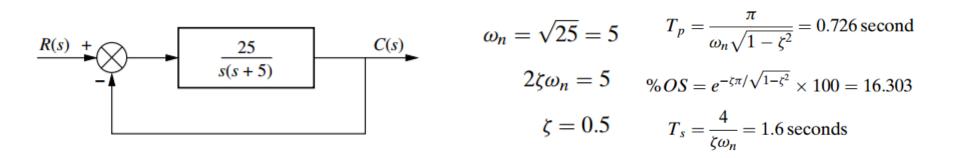
C(s) = E(s)G(s)



Analysis & design of feedback systems

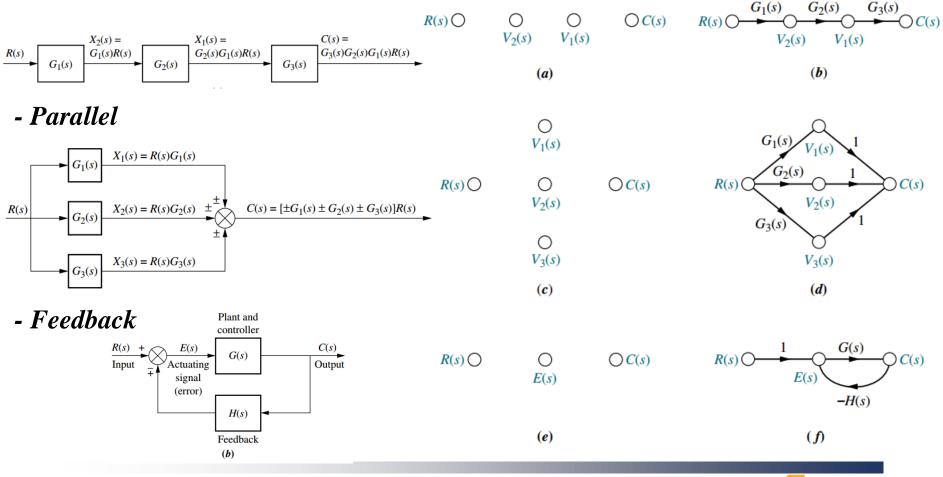


Finding Transient Response



Signal-flow graphs

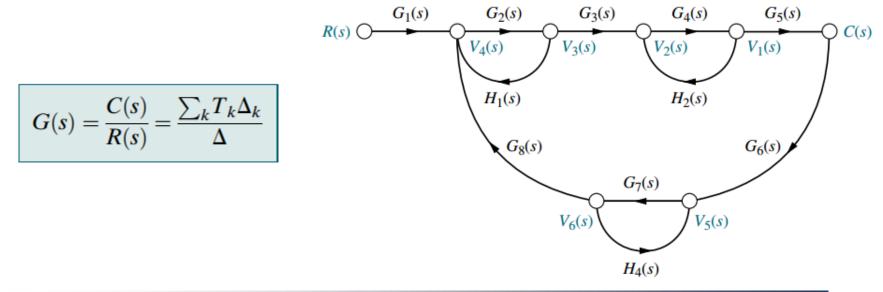
- Cascade



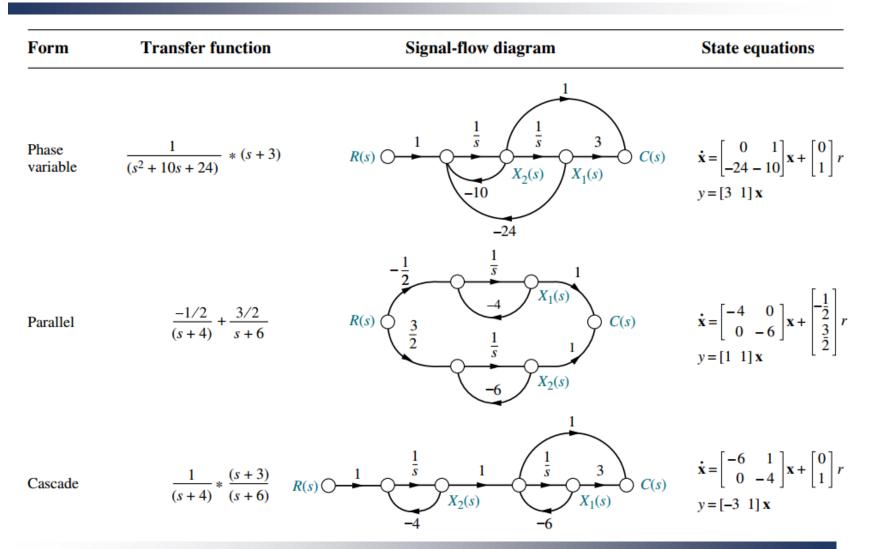
INCHEON NATIONAL UNIVERSIT

Mason's rule

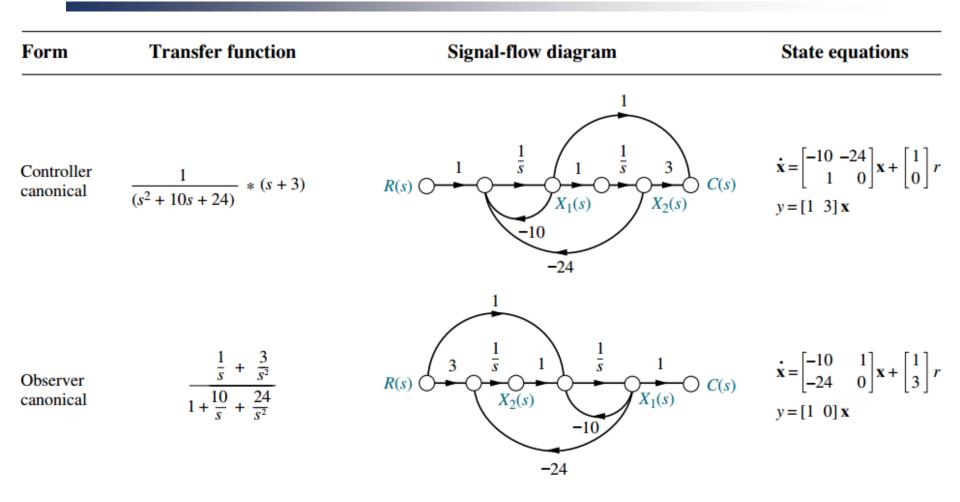
- k = number of forward paths
- $T_k = \text{the } k \text{th forward-path gain}$
 - $\Delta = 1 \Sigma \text{ loop gains} + \Sigma \text{ nontouching-loop gains taken two at a time} \Sigma \text{ nontouching-loop gains taken three at a time} + \Sigma \text{ nontouching-loop gains taken four at a time} \dots$
- $\Delta_k = \Delta \Sigma$ loop gain terms in Δ that touch the *k*th forward path. In other words, Δ_k is formed by eliminating from Δ those loop gains that touch the *k*th forward path.



Signal-flow graphs of state equations (1)

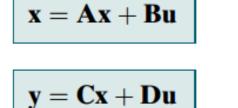


Signal-flow graphs of state equations (2)



$$\mathbf{z} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}\mathbf{z} + \mathbf{P}^{-1}\mathbf{B}\mathbf{u}$$

$$\mathbf{y} = \mathbf{C}\mathbf{P}\mathbf{z} + \mathbf{D}\mathbf{u}$$



$$\mathbf{P} = \begin{bmatrix} \mathbf{U}_{\mathbf{z}_1} \mathbf{U}_{\mathbf{z}_2} \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \mathbf{P}\mathbf{z}$$

$$\mathbf{z} = \mathbf{P}^{-1}\mathbf{x}$$

Example

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & -5 & -7 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \mathbf{x}$$

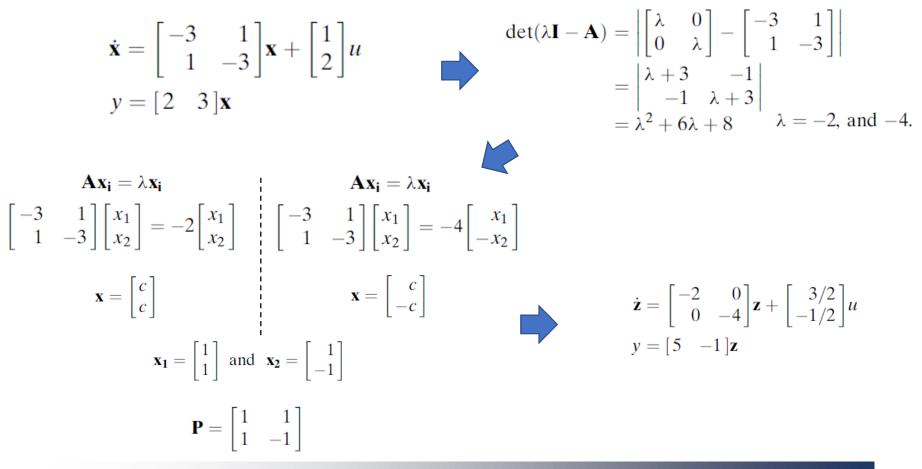
$$\begin{aligned} z_{1} = 2x_{1} \\ z_{2} = 3x_{1} + 2x_{2} \\ z_{3} = x_{1} + 4x_{2} + 5x_{3} \end{aligned} \qquad \mathbf{z} = \begin{bmatrix} 2 & 0 & 0 \\ 3 & 2 & 0 \\ 1 & 4 & 5 \end{bmatrix} \mathbf{x} = \mathbf{P}^{-1}\mathbf{x} \qquad \mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{bmatrix} 2 & 0 & 0 \\ 3 & 2 & 0 \\ 1 & 4 & 5 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & -5 & -7 \end{bmatrix} \begin{bmatrix} 0.5 & 0 & 0 \\ -0.75 & 0.5 & 0 \\ 0.5 & -0.4 & 0.2 \end{bmatrix} \\ &= \begin{bmatrix} -1.5 & 1 & 0 \\ -1.25 & 0.7 & 0.4 \\ -2.5 & 0.4 & -6.2 \end{bmatrix} \mathbf{z} + \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix} u \qquad \qquad \mathbf{P}^{-1}\mathbf{B} = \begin{bmatrix} 2 & 0 & 0 \\ 3 & 2 & 0 \\ -2.5 & 0.4 & -6.2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix} u \\ \mathbf{C}\mathbf{P} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix} = \begin{bmatrix} 0.5 & 0 & 0 \end{bmatrix} \\ = \begin{bmatrix} 0.5 & 0 & 0 \\ 0.5 & -0.4 & 0.2 \end{bmatrix} = \begin{bmatrix} 0.5 & 0 & 0 \\ 0.5 & -0.4 & 0.2 \end{bmatrix} \end{aligned}$$

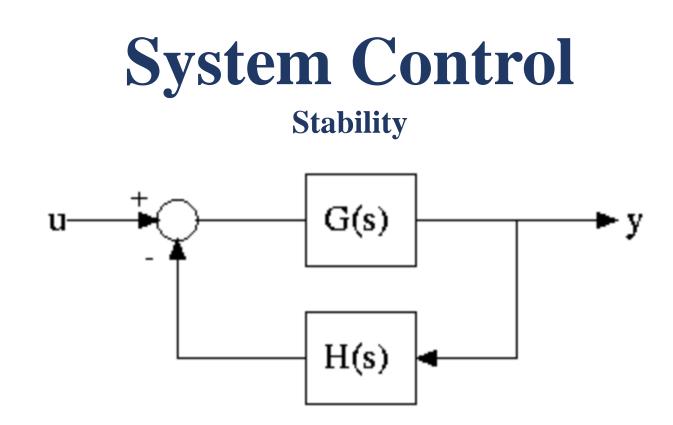
Example: Diagonalization

$$\dot{\mathbf{x}} = \begin{bmatrix} -3 & 1\\ 1 & -3 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1\\ 2 \end{bmatrix} \mathbf{u}$$
$$\mathbf{y} = \begin{bmatrix} 2 & 3 \end{bmatrix} \mathbf{x}$$

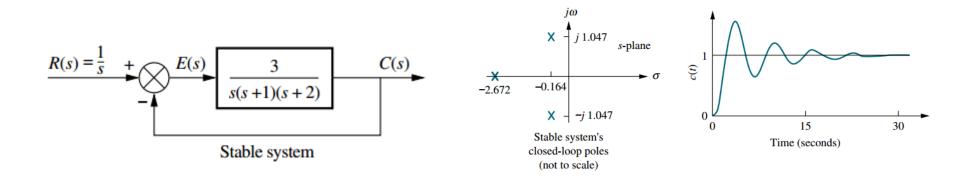
$$\operatorname{det}(\lambda \mathbf{I} - \mathbf{A}) = \begin{vmatrix} \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} - \begin{bmatrix} -3 & 1 \\ 1 & -3 \end{bmatrix} \end{vmatrix} \qquad \begin{bmatrix} -3 & 1 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = -2 \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad \begin{bmatrix} -3 & 1 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = -4 \begin{bmatrix} x_1 \\ -x_2 \end{bmatrix}$$
$$= \begin{vmatrix} \lambda + 3 & -1 \\ -1 & \lambda + 3 \end{vmatrix} \qquad \mathbf{x} = \begin{bmatrix} c \\ c \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} c \\ -c \end{bmatrix}$$
$$\mathbf{x} = \begin{bmatrix} c \\ -c \end{bmatrix}$$
$$\mathbf{x} = \begin{bmatrix} c \\ -c \end{bmatrix}$$
$$\mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ and } \mathbf{x}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
$$\mathbf{P} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

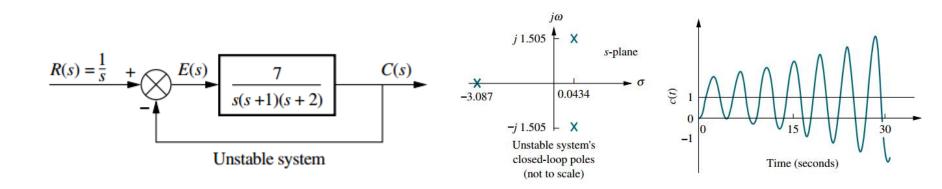
Example: Diagonalization





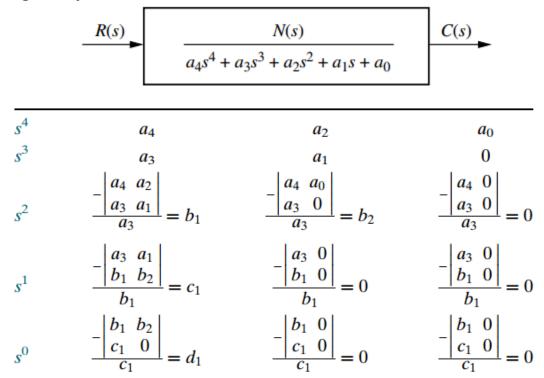
Stable & Unstable





Routh-Hurwitz criterion

How many system poles are in the left half-plane, in the right half-plane, and on the imaginary axis?



of sign changes in the first column = # of roots in RHP

Routh-Hurwitz criterion: special cases (1)

Zero Only in the First Column

$$T(s) = \frac{10}{s^5 + 2s^4 + 3s^3 + 6s^2 + 5s + 3}$$

Stability via Epsilon Method

Label	First column	$\epsilon = +$	$\epsilon = -$
s ⁵	1	+	+
<i>s</i> ⁴	2	+	+
<i>s</i> ³	θε	+	-
s^2	$\frac{6\epsilon - 7}{\epsilon}$	-	+
s^1	$\frac{42\epsilon - 49 - 6\epsilon^2}{12\epsilon - 14}$	+	+
s^0	3	+	+

Stability via Reverse Coefficients

$$s^{n} + a_{n-1}s^{n-1} + \dots + a_{1}s + a_{0} = 0 \xrightarrow{\text{If } s \text{ is replaced by } 1/d,} \left(\frac{1}{d}\right)^{n} [1 + a_{n-1}d + \dots + a_{1}d^{(n-1)} + a_{0}d^{n}] = 0$$

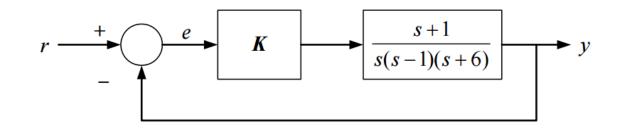
Routh-Hurwitz criterion: special cases (2)

Entire Row is Zero

When an entire row of the R-H array is zero, this indicates that there are complex conjugate pairs of roots that are mirror image of each other with respect to the real axis.

$$a(s) = s^5 + 5s^4 + 11s^3 + 23s^2 + 28s + 12$$
No change in sign \rightarrow all roots except two are in LHP. s^5 11128 s^4 52312 s^3 6.425.6 s^2 312 s^1 0 $\leftarrow a_1(s) = 3s^2 + 12$ New------- s_1° 60 s_1° 60 s_1° 60 s_1° 12New------- s_1° 12New------- s_1° 12 s_1° 11 s_1° 12 s_1° 13 s_1° 13 s_1°

Stability design via Routh-Hurwitz (1)



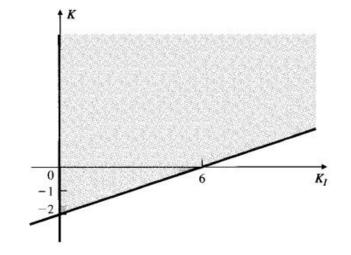
C.E.
$$1+K\frac{s+1}{s(s-1)(s+6)} = 0$$

or $s^3 + 5s^2 + (K-6)s + K = 0$
R-H array $s^3 \begin{vmatrix} 1 & K-6 \\ s^2 \\ s^1 \\ s^0 \end{vmatrix} \begin{vmatrix} 1 & K-6 \\ K \end{vmatrix}$
For the system to remain stable, it is necessary that $\frac{4K-30}{5} > 0$ and $K > 0$
or $K > 7.5$ and $K > 0$
 $\Rightarrow K > 7.5$
Closed-loop system $\frac{Y(s)}{R(s)} = \frac{K(s+1)}{s^3 + 5s^2 + (K-6)s + K}$

Stability design via Routh-Hurwitz (2)

$$R \circ \xrightarrow{+} \Sigma \longrightarrow K + \frac{K_I}{s} \longrightarrow \boxed{\frac{1}{(s+1)(s+2)}} \circ Y$$

$$1 + \left(K + \frac{K_I}{s}\right)\frac{1}{(s+1)(s+2)} = 0, \quad s^3 + 3s^2 + (2+K)s + K_I = 0.$$



The corresponding Routh array is

For asymptotic stability we must have

$$K_I > 0$$
 and $K > \frac{1}{3}K_I - 2$.

