Linear Quadratic Regulation
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Optimal control

u = Kx

l

)

o(t) = Axz(t) + Bu(t), x(0) = xo. t=(A+ BK)x, z(0)=x.

J = /000 ()" Qx(t) + u(t) Ru(t) dt

for a given K and x
x(t) = eATBK) .

and
J:f 2l eWBR (O 4 KTRK)eABE
0

_ l,g (/ (A—I—BK (Q"‘ KTRK) (A+BK)t dt) T
0

(o] br.c
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Optimal control

J = :Cg (/ (A—I—BK (Q + KTRK) (A+BK)t dt)
0
J can be computed as
J = xy X
where X is the solution to the Lyapunov equation
(A+ BK)'X + X(A+ BK)+Q+ K'"RK = 0.

above equation can be rewriting in the form because

A'X+XA-XBR'B'X+Q+ (XBR '+ K")R(R'B'X + K) =0.
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Optimal control

ATX 4+ XA-XBR'B'X +Q+(XBR '+ K")R(R'B'X + K) =0.

Note that K is confined to the term

(XBR '+ K")R(R'B'X + K) = 0
—> K=-R'B'X

and Algebraic Riccati Equation (ARE) in X

AlX + XA—-XBR'B'X+Q=0.
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Infinite horizon LQR problem

init

discrete-time system z; 1 = Axy + Buy, xg = @

problem: choose ug,u1,... to minimize
oo
T T
J = E (2, Qzr + ur Ru,)
7=0

with given constant state and input weight matrices

Q=Q" >0, R=R'>0

. .. an infinite dimensional problem
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Infinite horizon LQR problem

problem: it's possible that J = oo for all input sequences wuy, . ..

Ti11 = 22 + Ouy, ™t — 1

let's assume (A, B) is controllable

then for any z'™* there's an input sequence
ug, ..., Un-1, 0, O,...

that steers = to zero at ¢ = n, and keeps it there

for this u, J < o

init

and therefore, min,, JJ < oo for any x
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Receding-horizon LQR control

consider cost function

T=t+T
Je(ug, . ouper—1) = Y (#IQu- + ul Ru,)

T=t

e T is called horizon

e same as infinite horizon LQR cost, truncated after 1" steps into future
if (uy,...,u;, p_;) minimizes J;, uy is called (T-step ahead) optimal
receding horizon control

in words:

e at time ¢, find input sequence that minimizes T-step-ahead LQR cost,
starting at current time

e then use only the first input
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Receding-horizon LQR control

example: 1-step ahead receding horizon control

find us, uzq1 that minimize
T T T T
Jo = x; Quy + x5 Qi1 +uy Rug + up g Rugyy

first term doesn’t matter; optimal choice for u;4 is 0; optimal u,
minimizes

T{ Qi1 + uf Ruy = (Azy + Bug)' Q(Axy + Buy) + uf Ruy

thus, 1-step ahead receding horizon optimal input is
uw, = —(R+B'QB) 'B'QAx,

. .. a constant state feedback

OI|XA| CHOH 1
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Receding-horizon LQR control

in general, optimal T-step ahead LQR control is
us = Kz,  Kr=—(R+B"PrB)"'B'PrA
where

P =Q, Pi1=Q+ A'"PA— A'"PB(R+B'P,B)"'B'PA

i.e.. same as the optimal finite horizon LQR control, T' — 1 steps before
the horizon NV

e a constant state feedback

e state feedback gain converges to infinite horizon optimal as horizon
becomes long (assuming controllability)
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Closed-loop system

suppose K is LQR-optimal state feedback gain
T4l — ACCt + B’U;t = (A + BK)CEt

is called closed-loop system
(z441 = Az is called open-loop system)

is closed-loop system stable? consider
$t+1:2$t+ut, Q:O, R=1

optimal control is u; = Oxy, 7.e., closed-loop system is unstable

fact: if ((Q, A) observable and (A, B) controllable, then closed-loop system

Is stable
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Model Predictive Control
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Introduction
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Introduction
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Introduction
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x(k+ 1) = &x(k) + T'u(k)
x(k+2)=dx(k+1)+Tu(k+1)
= &(dx(k) + Tu(k)) + Tu(k + 1)
= ®2x(k) + ®Tu(k) + Mu(k + 1)

x(k + N) = ®Vx(k) + -




Introduction
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Introduction
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Introduction

H| & Aot
ERS =7

0| 2f
Reference Xt

bt
1A
L?_'.
IO
1
Rl
>
0
Ha
m
=2
¥
£y
v

+

k+N
k+N Y 7} X] 2] 2FEHtH -2t

S ]=;xTUIk)Qx(ilk)+uT(iIk)Ru(iIk)

}_l X olazd U*

i B — B |

U* = u (k|k), u* (k + 1|k), u* (k + 2|k), ..., w*(k + N|k)

I CHOH
UNICON LAB, Unmanned & Intelligent systems Control Laboratory 17 ' N U e

INCHEON NATIONAL UNIVERSITY



Model predictive control

Basics of MPC

Models

l

Performance index

Constraints

Standard MPC formulation

|

l

Solving the MPC problem

<

Quadratic Programming

Stability

Tunning

A 4

LMI-based Robust MPC

Simulation & Implementation
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Optimization in the loop

Classical control loop:

Reference Input Output
—> G(s) > Plant ——

T Measurements

The classical controller is replaced by an optimization algorithm:

Reference Optimizer | |nput Output
—> [ Plant >
A
Measurements

The optimization uses predictions based on a model of the plant.
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Motivation

Objective:

® Minimize lap time

Constraints:
® Avoid other cars
® Stay on road
® Don't skid
® Limited acceleration

Intuitive approach:

® | ook forward and plan
path based on
® Road conditions
® Upcoming corners
® Abilities of car
® ctc...

¥q ¥ OIXCHTH
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Introduction

Minimize (lap time)
while avoid other cars
stay on road

® Solve optimization problem
to compute minimum-time
path

) ﬁ'u Qrecyera
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Introduction

Minimize (lap time)
while avoid other cars
stay on road

® Solve optimization problem
to compute minimum-time
path

® \What to do if something
unexpected happens?

® \We didn't see a car around
the corner!

® Must introduce feedback
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Introduction

Minimize (lap time)
while avoid other cars
stay on road

® Solve optimization problem
to compute minimum-time
path

® Obtain series of planned
control actions

¢ Apply first control action

® Repeat the planning procedure

)N’ 2o
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Model Predictive Control

Objectives Model Constraints

Reference Optimizer | |nput Output
—> B > Plant ——
A
Measurements
[Do ] Plan
Plan

Plan
Tirge

Receding horizon strategy introduces feedback.
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Receding horizon principle

e attime k: Performance index .J (k) is minimized
e first element of optimal control sequence v(k) is applied to the system
e horizon shifted

e optimization restarted for time k + 1
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Two Different Perspectives

Classical design: design C MPC: real-time, repeated optimiza-
tion to choose u(t) — often in super-
visory mode

d L in f(z, u)
r > O—)—’r e m 7u > >
- T_: C - P Cy P Yy
A
+
n

Dominant issues addressed Dominant issues addressed

® Disturbance rejection (d — y) ® Control constraints (limits)

® Noise insensitivity (n — y) ® Process constraints (safety)

® Model uncertainty (usually in time domain)

(usually in frequency domain)
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Constraints in Control

All physical systems have constraints:

® Physical constraints, e.g. actuator limits

® Performance constraints, e.g. overshoot

e Safety constraints, e.g. temperature/pressure limits

Optimal operating points are often near constraints.

Classical control methods: | constraint

® Ad hoc constraint management

output

jet point

® Set point sufficiently far from constraints
® Suboptimal plant operation

Predictive control:

)
o
S
%)
21
=t
L
5
—

® Constraints included in the design

output

® Set point optimal

® Optimal plant operation et point
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MPC: Mathematical Formulation

N—1
Ui (x(t)) := argUmin Z q(Xeok, Ursk)
£ k=0

subj. to x; = x(t)
Xt+k+1 = AXerk + BUryk
Xeyk € X
Ur €U

measurement
system model
state constraints

Input constraints

optimization variables

Problem is defined by

¢ Objective that is minimized
® |[nternal system model to predict system behavior
® Constraints that have to be satisfied
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MPC: Mathematical Formulation

N—1
argmin Z q(Xeak, Upok)
Y k=0 uy Output y(t)

Y

Plant —

subj. to x; = x(t)
Xttk+1 = AXerk + Blryk

Xt+k € X, Uty k € U

y

Plant State x(t)

At each sample time:

® Measure / estimate current state x(t)
® Find the optimal input sequence for the entire planning window N:
Uf ={uf Ui, ..., Ui n—1}

® [mplement only the first control action u;

OI|XA| CHOH 1
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Important Aspects of MPC

Main advantages:

® Systematic approach for handling constraints
®* High performance controller

Main challenges:

* Implementation
MPC problem has to be solved in real-time, i.e. within the sampling
interval of the system, and with available hardware (storage, processor,...).
® Stability
Closed-loop stability, I.e. convergence, Is not automatically guaranteed
® Robustness
The closed-loop system iIs not necessarily robust against uncertainties or
disturbances
® Feasibility
Optimization problem may become infeasible at some future time step,
I.e. there may not exist a plan satisfying all constraints

OI|XA| CHOH 1
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General Problem Formulation

Consider the nonlinear time-invariant system
x(t+1) = g(x(1). u(t))
subject to the constraints
h(x(t), u(t)) <0,Vt>0

with x(t) € R" and u(t) € R the state and input vectors. Assume that
9(0,0) = 0, h(0,0) < 0.
Consider the following objective or cost function
N—1
Jo—sn(xo, Up—n—1) = p(xn) + Z q( Xk, Uk)
k=0
where

® N is the time horizon,

® X1 =9g(Xk, k), k=0,..., N —1 and xo = x(0),

® Upssn—1:=[ug...., UE_I]T c RS, s =mN,

® g(xk,ux) and p(xy) are the stage cost and terminal cost, respectively.

ol % kol
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Objectives

® Finite Time Solution

® a general nonlinear programming problem (batch approach)

® recursively by invoking Bellman's Principle of Optimality (recursive
approach)

® discuss in details the linear system case

® Infinite Time Solution. We will investigate

® if a solution exists as N — oo
® the properties of this solution
® approximate of the solution by using a receding horizon technique

® Uncertainty. We will discuss how to extend the problem description and
consider uncertianty.

OI|XA| CHOH 1
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Linear Quadratic Optimal Control

® |n this section, only linear discrete-time time-invariant systems
x(k + 1) = Ax(k) 4+ Bu(k)

and quadratic cost functions
N—1
Jo(x0, U) 1= xn Pxn + Z(X;_QX/( + u, Ruy) (1)
k=0

are considered, and we consider only the problem of regulating the state
to the origin, without state or input constraints.

® The two most common solution approaches will be described here

1. Batch Approach, which yields a series of numerical values for the input

2. Recursive Approach, which uses Dynamic Programming to compute
control policies or laws, i.e. functions that describe how the control
decisions depend on the system states.

.S il
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Unconstrained Finite Horizon Control Problem

e Goal: Find a sequence of inputs Uy sy_1 :=[tg, ..., uy_,]" that
minimizes the objective function

N—1

J (x(0)) = min Xy Pxv 4+ (¢ Qxic + uy Ruie)
0—=N-1 k—0

subj. to xxk11 = Axx + Buk, k=0, ..., N—1

xo = x(0)

e P>0,with P=P", is the terminal weight
e Q >0, with Q= Q", is the state weight

® R0, with R=R", is the input weight

® N is the horizon length

® Note that x(0) is the current state, whereas X, . . ., xy and ug, ..., UN—1
are optimization variables that are constrained to obey the system
dynamics and the initial condition.

Ol CHot
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Receding Horizon Control

Objectives Model Constraints

Reference Optimizer |  |nput Output
“> [ > Plant [—
A
Measurements

[ Do ] Plan

Plan

F Plan
Time
>

Receding horizon strategy introduces feedback.
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Receding Horizon Control

Compute optimal sequence over N-step horizon

N
) u(xp) := argmin ZX,-TQX,' + u! Ru;
i=0
S.t. Xj41 = Ax; + Bu,

L)

Extract first input in
sequence

For unconstrained systems, this is a constant linear controller
However, can extend this concept to much more complex systems (MPC)

I CHOH
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Example - Impact of Horizon Length

Consider the lightly damped, stable system

w2

52 4 2¢ws + w?

G(s) :=

where w =1, ( = 0.01. We sample at 1I0Hzandset P=Q =1/, R =1.

Discrete-time state-space model: Closed-loop response
1.988 —0.998 0.125 —nc2
+ N=3 |
X‘[l 0 }”[o}“
N=6
_____________________________________________________________ Noo
[—nZs

100 150

Time

OI|XA| CHOH 1
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-
Example: Short h N =
Xampie. ort norizon
o 2 2
15 - =0 1.5/ h= 15 i=2
1 K4 1 1
05- o 0.5 0.5
<' 0 ." <0 y x' 0
’ K
-05- d’ -0.5 ;:".f' 05
-1 3 -1 9'/.‘ -1
oﬂ L 3 4
-15- . " —15 ,D *1.5' ,pl
d d d
_ ‘ -2 i ' -2 - :
- -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 =3 -2 -1 0 1 2 3
X X, X
1 1
2. 2r 2
15 i =3 15 i=4 15 i =19
1 1 1
0.5 0.5f 05
XN 0 xN 0 ><N 0
05 -05 -0.5
-1 -1 -1
-15 -15 o 45
o d d
R T S 0 1 2 3 R — 0 1 2 3 B T S 0 1 2 3

Short horizon:

Prediction and closed-loop response differ.
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Long horizon: Prediction and closed-loop match.
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Stability of Finite-Horizon Optimal Control Laws

Consider the system

w2
G =
() 52 + 2¢ws + w?
where w = 0.1 and { = —1, which has been discretized at 1r/s.

(Note that this system is unstable)

s the system xT = (A + BKgr n)X
stable?

Where Kr p Is the finite horizon LQR
controller with horizon N and weight R
(Q taken to be the identity)

Horizon N

Blue = stable, white = unstable

200 400 600 800 1000
Weight R

OI|XA| CHOH 1
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Infinite Horizon Control Problem: Optimal Solution

® |n some cases we may want to solve the same problem with an infinite
horizon:

o9

J(x(0)) = m(ir)1 Z (x¢ @xx + u, Ruk)
W k=0
SUbj. to Xk_|_1:AXk—|-BUk, k=20,1,2,..., o0
X0 = X(O)

® As with the Dynamic Programming approach, the optimal input is of the

form
U (k) = —(B'PyB + R) 1B P oAx(k) := Faox(k)

and the infinite-horizon cost-to-go is

Joo (x(K)) = x(k) " Poux(k) .

OI|XA| CHOH 1
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Infinite Horizon Control Problem: Optimal Solution

I
® The matrix Py, comes from an infinite recursion of the RDE, from a
notional point infinitely far into the future.

® Assuming the RDE does converge to some constant matrix P, it must
satisfy the following (from (6), with Py = Pxy1 = Py)

Po=A"P A+Q—-A"P.B(B'P..B+R)'B'P A,

which is called the Algebraic Riccati equation (ARE).

® The constant feedback matrix F Is referred to as the asymptotic form of
the Linear Quadratic Regulator (LQR).

® In fact, if (A, B) is stabilizable and (Q'/2, A) is detectable, then the RDE
(initialized with Q at kK = oo and solved for k ™\, 0) converges to the
unique positive definite solution P4, of the ARE.

OI|XA| CHOH 1
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Summary
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