Modern Control Theory

Linear Quadratic Control
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Review

Full-state feedback Luenberger observer

x = (A + BK)x X = AR + Bu + L(Cx — CX)

u = Kx
How to choose the gain K& L ?

We want to stabilize

#(t) = Az(t) + Bu(t), 2(0) = zp.

and minimize

J = /000 z()1Qx(t) + u(t)! Ru(t) dt
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Some stability definitions

we consider nonlinear time-invariant system @ = f(x), where f : R — R"
a point x. € R" is an equilibrium point of the system if f(x.) =0

z. is an equilibrium point <= x(t) = x. is a trajectory

suppose x. is an equilibrium point

e system is globally asymptotically stable (G.A.S.) if for every trajectory

x(t), we have z(t) — x. as t — oc
(implies x. is the unique equilibrium point)

e system is locally asymptotically stable (L.A.S.) near or at x. if there is
an R>0st. ||[z(0) — x| < R= x(t) > z. as t — 0
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Energy and dissipation functions

consider nonlinear system & = f(x), and function V : R" — R
we define V : R” — R as V(2) = VV(2)T f(2)

V(2) gives %V(a:(t)) when z = (), & = f(x)

we can think of V' as generalized energy function, and —V as the
associated generalized dissipation function
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Positive definite functions

I
a function V : R" — R is positive definite (PD) if

o V(z) >0 for all 2
e V(z)=0if and only if z =0

e all sublevel sets of VV' are bounded

last condition equivalent to V' (z) — oo as z — oo

example: V(z) = 2z Pz, with P = PT is PD if and only if P > 0
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Lyapunov theory

Lyapunov theory is used to make conclusions about trajectories of a system
t = f(x) (e.g., G.A.S.) without finding the trajectories
(i.e., solving the differential equation)

a typical Lyapunov theorem has the form:

e if there exists a function V : R™ — R that satisfies some conditions on
Vand V

e then, trajectories of system satisfy some property

if such a function V exists we call it a Lyapunov function (that proves the
property holds for the trajectories)

Lyapunov function V' can be thought of as generalized energy function for
system
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Lyapunov equation

What is the Lyapunov theory??

the Lyapunov equation is
ATP+ PA+Q=0

where A, P, Q € R"*", and P, (Q are symmetric

interpretation: for linear system & = Ax, if V(2) = 21 Pz, then

V(z) = (A2)T Pz + 2T P(Az) = —27Qx

i.e., if 21 Pz is the (generalized)energy, then 21z is the associated
(generalized) dissipation
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Lyapunov equation

we consider system & = Ax, with \{,..., A\, the eigenvalues of A

if P> 0, then

boundedness condition: if P > 0, (Q > 0 then

e all trajectories of © = Ax are bounded
(this means RA; <0, and if RA\; = 0, then \; corresponds to a Jordan
block of size one)

e the ellipsoids {z | 21 Pz < a} are invariant

if P >0, Q > 0 then the system & = Ax is (globally asymptotically)
stable, i.e., RA; < 0
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Lyapunov equation

Unique solution

We assume A € R™*", P = PT ¢ R™". It follows that Q = QT ¢ R™".

Continuous-time linear system: for & = Az, V(z) = 2" Pz, we have V(z)

= —2TQz, where
P, Q satisfy (continuous-time) Lyapunov equation ATP + PA+ Q = 0.

thus if A is stable, for any () there is exactly one solution P of Lyapunov
equation ATP+PA+Q =0

P / emTQetA dt
0
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Lyapunov equation

P = / etATQetA dt
0

to see this, we note that

o0

(ATetATQetA — etATQetAA) dt

/
_ /0 h (iefATQefA) dt

ATP + PA

dt
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Lyapunov equation

1.x =x
3. .72,'1 = —X1
.72,'2 = —ZXZ

5. 561 = x1 - xZ
X'Z == _2x2
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2.X = —Xx
4. 561 = X1
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Optimal control

How to choose the gain K& L ?

We want to stabilize

#(t) = Ax(t) + Bu(t), z(0) = zo.

J = /OOO ()1 Qx(t) + u(t)! Ru(t) dt

Assumptions
a) @ >0, R>0;
b) (A, B) stabilizable;
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Optimal control

u = Kx

l

)

o(t) = Axz(t) + Bu(t), x(0) = xo. t=(A+ BK)x, z(0)=x.

J = /000 ()" Qx(t) + u(t) Ru(t) dt

for a given K and x
x(t) = eATBK) .

and
J:f 2l eWBR (O 4 KTRK)eABE
0

_ l,g (/ (A—I—BK (Q"‘ KTRK) (A+BK)t dt) T
0
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Optimal control

J = :Cg (/ (A—I—BK (Q + KTRK) (A+BK)t dt)
0
J can be computed as
J = xy X
where X is the solution to the Lyapunov equation
(A+ BK)'X + X(A+ BK)+Q+ K'"RK = 0.

above equation can be rewriting in the form because

A'X+XA-XBR'B'X+Q+ (XBR '+ K")R(R'B'X + K) =0.
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Optimal control

ATX 4+ XA-XBR'B'X +Q+(XBR '+ K")R(R'B'X + K) =0.

Note that K is confined to the term

(XBR '+ K")R(R'B'X + K) = 0
—— K=-R'B'X

and Algebraic Riccati Equation (ARE) in X

AlX + XA—-XBR'B'X+Q=0.
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