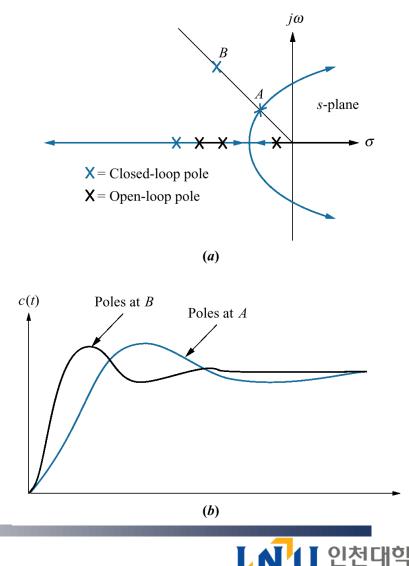


Improving transient response

Figure 9.1

a. Sample root locus, showing possible design point via gain adjustment (A) and desired design point that cannot be met via simple gain adjustment (B);
b. responses from poles at A and B

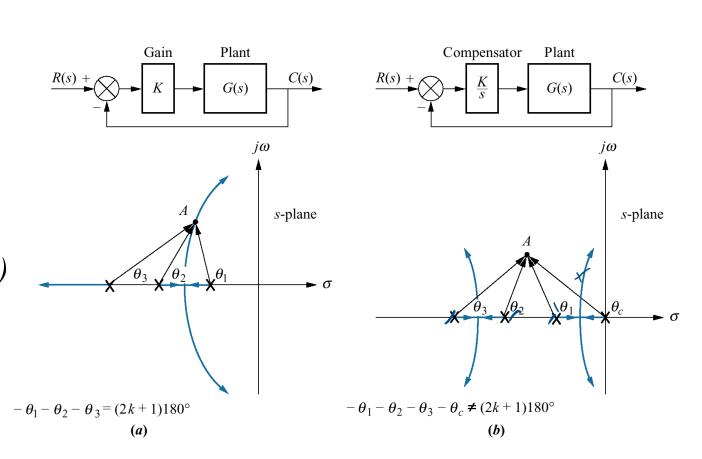


Improving steady-state error

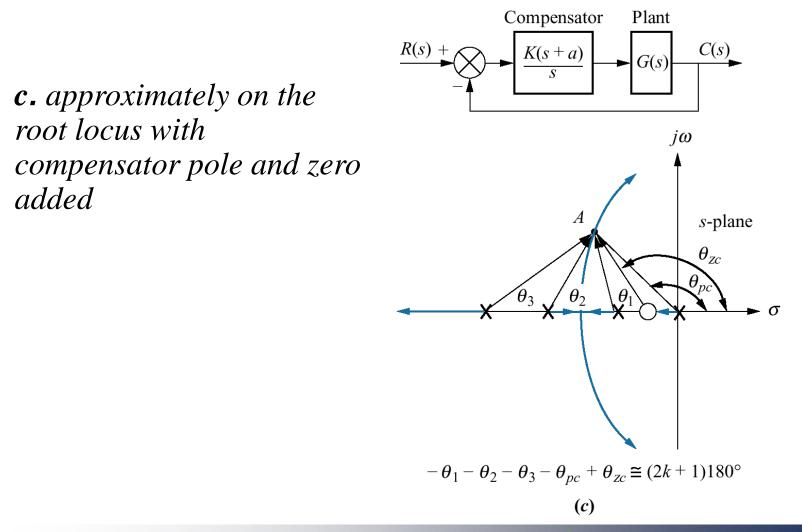
Cascade Original controller Plant *Compensation* compensator techniques: a. cascade; C(s)R(s) + $G_1(s)$ $G_2(s)$ $G_3(s)$ **b.** feedback (a)Ideal compensators are implemented with active networks. Original controller Plant R(s)C(s) $G_1(s)$ $G_2(s)$ Feedback compensator $H_1(s)$ **(b)**

Improving steady-state error via cascade compensation

Pole at A is: **a.** on the root locus without compensator; **b.** not on the root locus with compensator pole added; (figure continues)



Ideal integral compensation (PI)

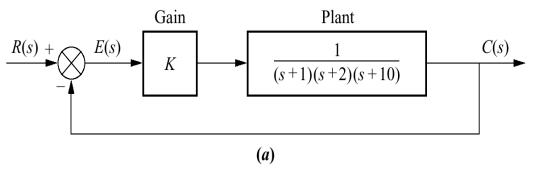


Closed-loop system for example 9.1

Closed-loop system for Example 9.1

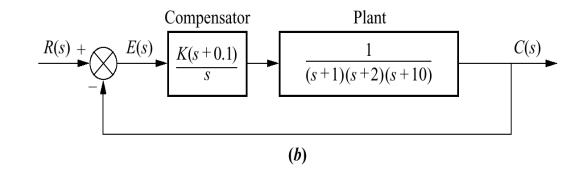
a. before compensation;*b.* after ideal integral compensation

Problem: The given system operating with damping ratio of 0.174. Add an ideal integral compensator to reduce the ss error.

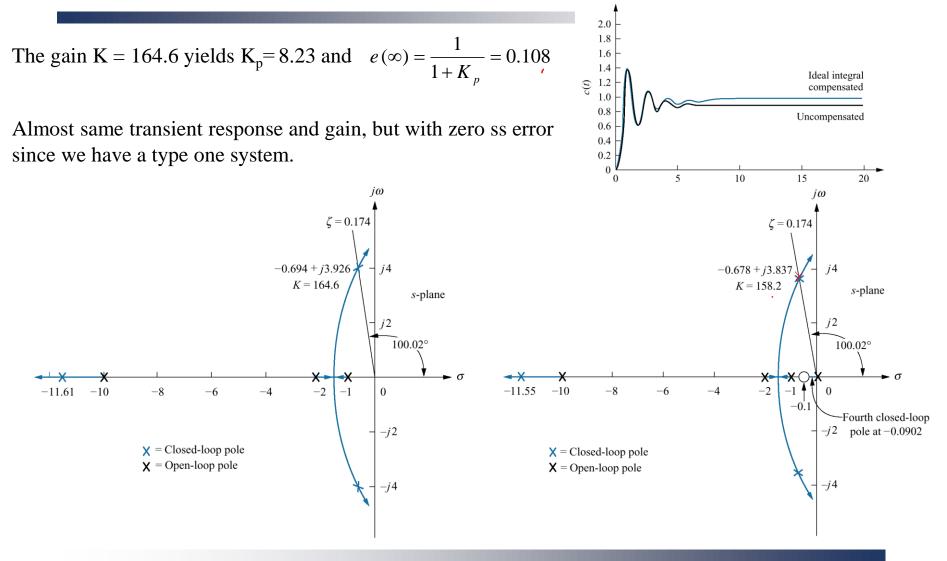


Solution:

We compensate the system by choosing a pole at the origin and a zero at -0.1

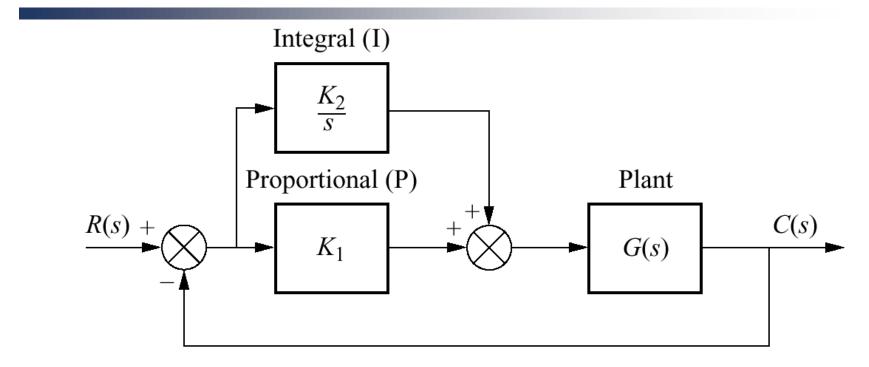


Root locus for compensated system



レンシン いCHEON NATIONAL UNIVERSITY

PI controller

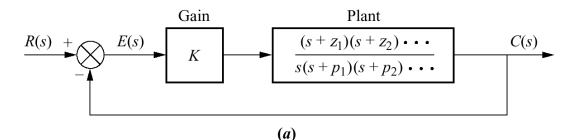


A method to implement an Ideal integral compensator is shown.

$$G_{c}(s) = K_{1} + \frac{K_{2}}{s} = \frac{K_{1}(s + \frac{K_{2}}{K_{1}})}{s}$$

Lag compensator

a. Type 1 uncompensated system;
b. Type 1 compensated system;
c. compensator pole-zero plot



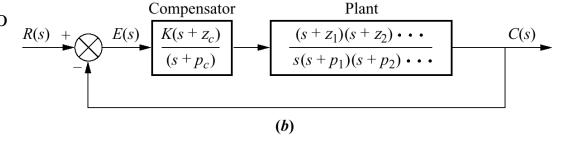
Using passive networks, the compensation pole and zero is moved to the left, close to the origin.

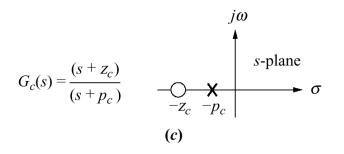
The static error constant for uncompensated system is

$$K_{vo} = \frac{K z_1 z_2 \dots}{p_1 p_2 \dots}$$

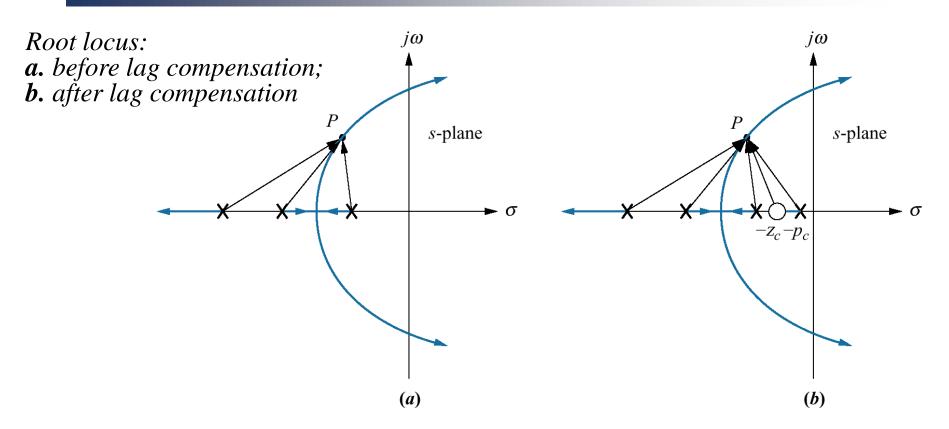
Assuming the compensator is used as in b & c the static error is

$$K_{vN} = \frac{(Kz_1 z_2 \dots)(z_c)}{(p_1 p_2 \dots)(p_c)}$$





Effect on transient response

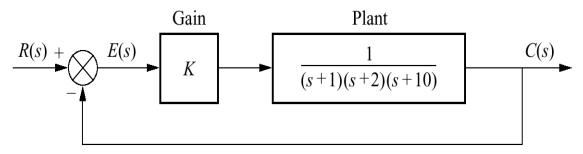


Almost no change on the transient response and same gain K. While the ss error is effected since $K = K \frac{z_c}{z_c} > K$

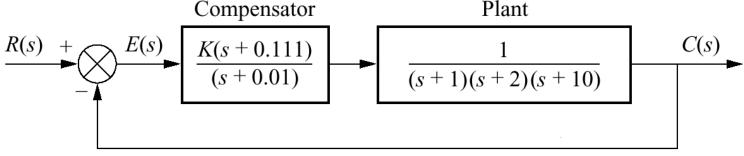
$$K_{vN} = K_{vo} \frac{\zeta_c}{p_c} > K_{vo}$$

Lag compensator design example 9.2

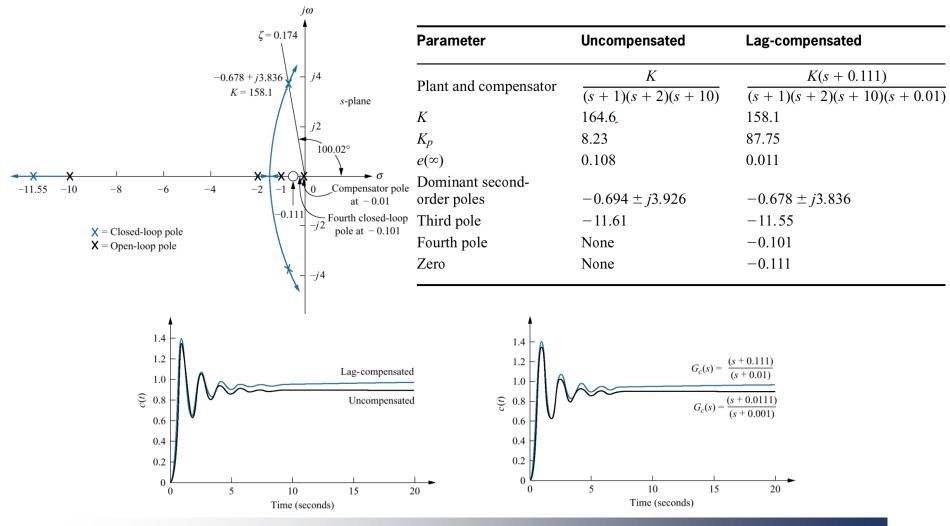
Problem: Compensate the shown system to improve the ss error by a factor of 10 if the system is operating with a damping ratio of 0.174



Solution: the uncompensated system error from previous example is 0.108 with $K_p = 8.23$. a ten fold improvement means ss error = 0.0108 so Kp = 91.59. so the ratio $\frac{z_c}{p_c} = \frac{K_{PN}}{K_{Po}} = \frac{91.59}{8.23} = 11.13$ arbitrarily selecting $P_c = 0.01$ and $Z_c = 11.13P_c \approx 0.111$



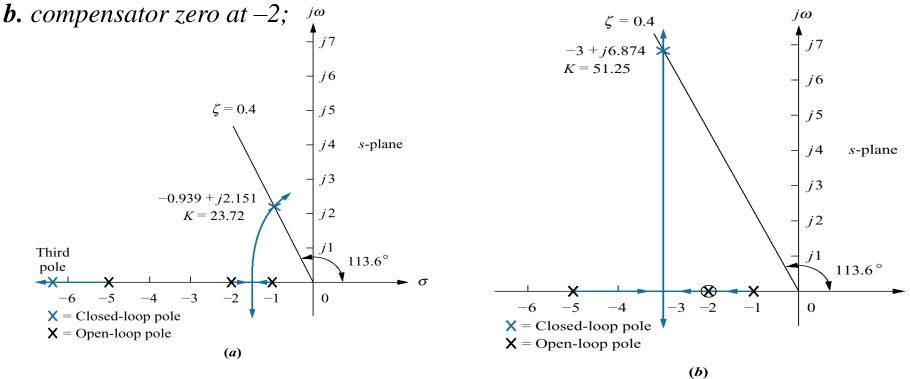
Root locus for compensated system



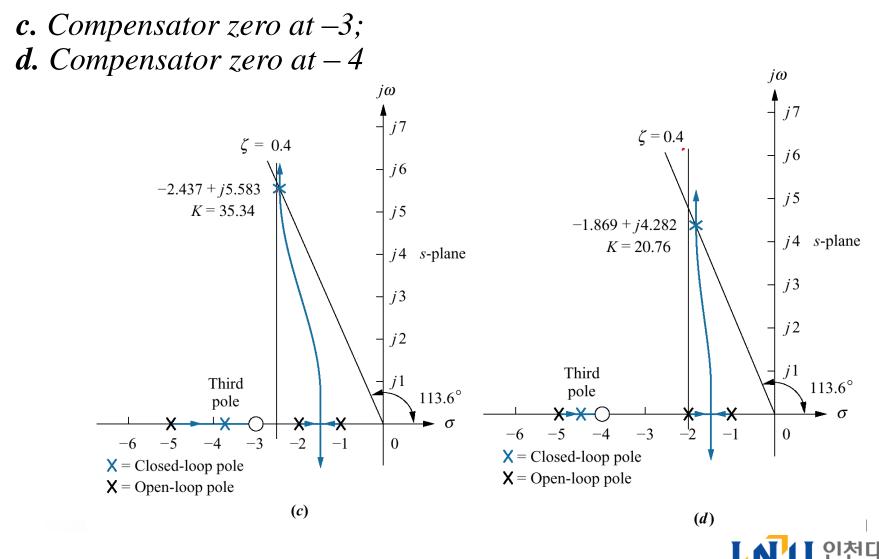
Improving transient response via cascade compensation

Ideal Derivative compensator is called PD controller When using passive network it's called lead compensator Using ideal derivative compensation: $G_c(s) = s + z_c$

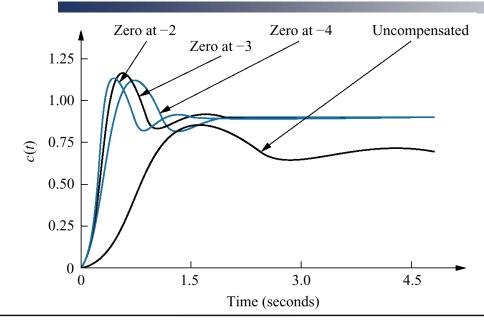
a. uncompensated;



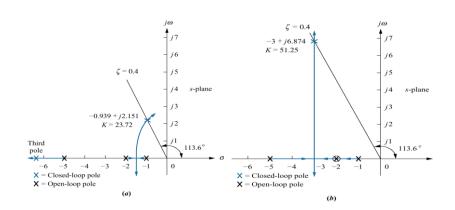
Improving transient response via cascade compensation

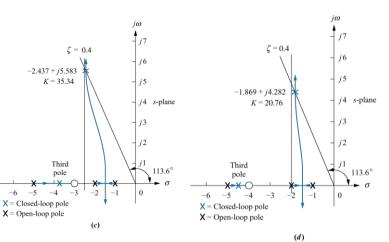


Uncompensated system and ideal derivative compensation solutions



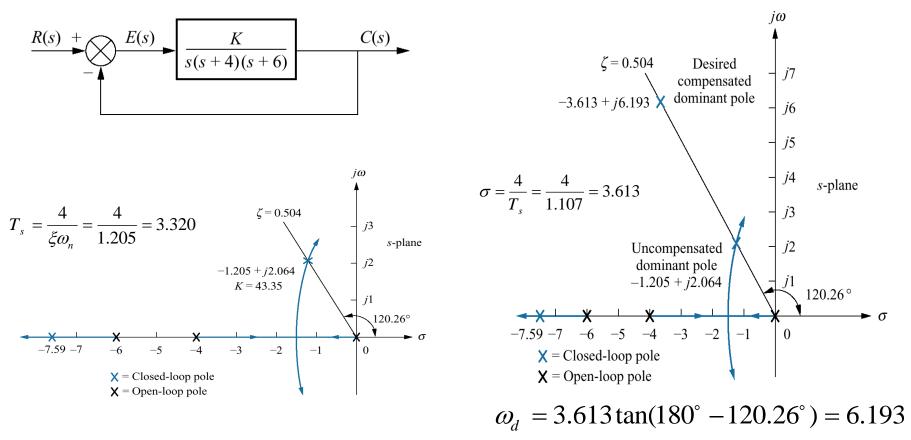
	Uncompensated	Compensation b	Compensation c	Compensation d
Plant and compensator	$\frac{K}{(s+1)(s+2)(s+5)}$	$\frac{K(s+2)}{(s+1)(s+2)(s+5)}$	$\frac{K(s+3)}{(s+1)(s+2)(s+5)}$	$\frac{K(s+4)}{(s+1)(s+2)(s+5)}$
Dom. poles	$-0.939 \pm j2.151$	$-3 \pm j6.874$	$-2.437 \pm j5.583$	$-1.869 \pm j4.282$
Κ	23.72	51.25	35.34	20.76
ζ	0.4	0.4	0.4	0.4 •
ω_n	2.347	7.5	6.091	4.673
%OS	25.38	25.38	25.38	25.38
T_s	4.26	1.33	1.64	2.14
T_p	1.46	0.46	0.56	0.733
K_p	2.372	10.25	10.6	8.304
$e(\infty)$	0.297	0.089	0.086	0.107
Third pole	-6.123	None	-3.127	-4.262
Zero	None	None	-3	-4
Comments	Second-order approx. OK	Pure second- order	Second-order approx. OK	Second-order approx. OK





Feedback control system for example 9.3

Problem: Given the system in the figure, design an ideal derivative compensator to yield a 16% overshoot with a threefold reduction in settling time.



Feedback control system for example 9.3

The sum of angles from all poles to the desired compensated pole -3.613+j6.193 is -275.6

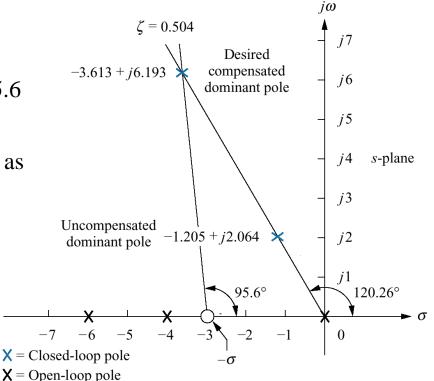
The angle of the zero to be on the root locus is 275.6 -180=95.6

The location of the compensator zero is calculated as

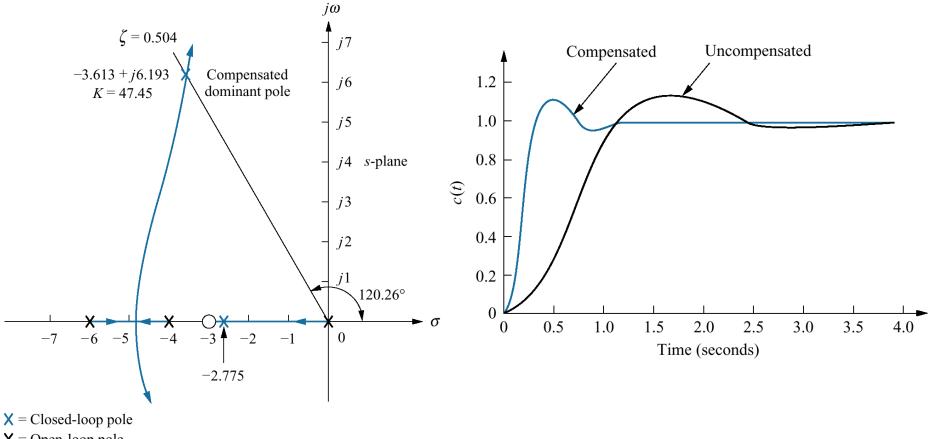
$$\frac{6.193}{3.613 - \sigma} = \tan(180^{\circ} - 95.6^{\circ})$$

Thus $\sigma = 3.006$

	Uncompensated	Simulation	Compensated	Simulation
Plant and compensator	$\frac{K}{s(s+4)(s+6)}$		$\frac{K(s+3.006)}{s(s+4)(s+6)}$	
Dominant poles	$-1.205 \pm j2.064$		$-3.613 \pm j6.193$	
Κ	43.35		47.45	
ζ	0.504		0.504	
ω_n	2.39		7.17	
%OS	16	14.8	16	11.8
T_s	3.320	3.6	1.107	1.2
T_p	1.522	1.7	0.507	0.5
K _v	1.806		5.94	
$e(\infty)$	0.554		0.168	
Third pole	-7.591		-2.775	
Zero	None		-3.006	
Comments	Second-order approx. OK		Pole-zero not canceling	



Feedback control system for example 9.3



 $\mathbf{X} =$ Open-loop pole

INU 인천대학교 INCHEON NATIONAL UNIVERSITY