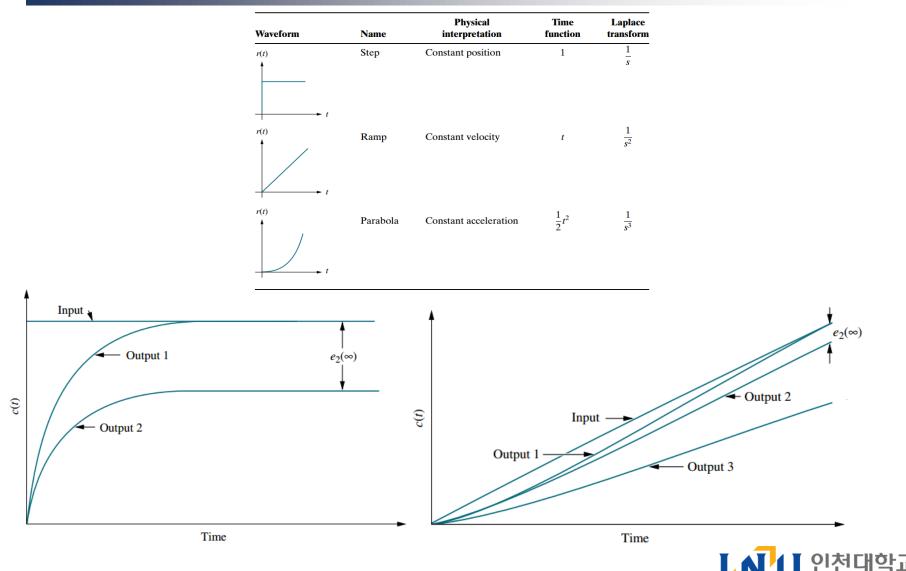


Steady-state error



INCHEON NATIONAL UNIVERSITY

Representation

Final value theorem

$$\mathscr{L}[\dot{f}(t)] = \int_{0-}^{\infty} \dot{f}(t)e^{st}dt = sF(s) - f(0-)$$

As $s \rightarrow 0$,

$$\int_{0-}^{\infty} \dot{f}(t)dt = f(\infty) - f(0-) = \lim_{s \to 0} sF(s) - f(0-)$$

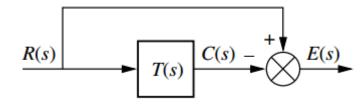
or

- In terms of T(s)

E(s) = R(s) - C(s)

C(s) = R(s)T(s)

$$e(\infty) = \lim_{s \to \infty} sR(s)[1 - T(s)]$$



 $f(\infty) = \lim_{s \to 0} sF(s)$ - In terms of G(s) E(s) = R(s) - C(s)C(s) = E(s)G(s) $E(s) = \frac{R(s)}{1 + G(s)}$ $e(\infty) = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)}$ R(s) + E(s)C(s)G(s)

Steady-state error in terms of G(s)

Step Input. with R(s) = 1/s, we find

$$e(\infty) = e_{\text{step}}(\infty) = \lim_{s \to 0} \frac{s(1/s)}{1 + G(s)} = \frac{1}{1 + \lim_{s \to 0} G(s)}$$

$$\lim_{s\to 0} G(s) = \infty$$

Ramp Input. with, $R(s) = 1/s^2$, we obtain

$$e(\infty) = e_{\text{ramp}}(\infty) = \lim_{s \to 0} \frac{s(1/s^2)}{1 + G(s)} = \lim_{s \to 0} \frac{1}{s + sG(s)} = \frac{1}{\lim_{s \to 0} sG(s)}$$

$$\lim_{s \to 0} sG(s) = \infty$$

Parabolic Input. with $R(s) = 1/s^3$, we obtain

$$e(\infty) = e_{\text{parabola}}(\infty) = \lim_{s \to 0} \frac{s(1/s^3)}{1 + G(s)} = \lim_{s \to 0} \frac{1}{s^2 + s^2 G(s)} = \frac{1}{\lim_{s \to 0} s^2 G(s)}$$

$$\lim_{s \to 0} s^2 G(s) = 0$$

Static error constants and system type

Static Error Constants

(

Given unity feedback system, we have the following relationships:

For a step input R(t) = u(t), $e(\infty) = e_{step}(\infty) = \frac{1}{1 + \lim_{s \to 0} G(s)}$

• Position constant
$$K_p = \lim_{s \to 0} G(s)$$

For a ramp input R(t) = tu(t), $e(\infty) = e_{ramp}(\infty) = \frac{1}{\lim_{s \to 0} sG(s)}$

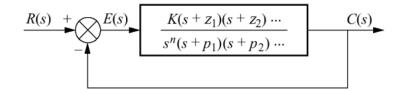
• Velocity constant
$$K_{y} = \lim_{s \to 0} sG(s)$$

For a parabolic input
$$R(t) = \frac{1}{2}t^2u(t)$$
, $e(\infty) = e_{parabola}(\infty) = \frac{1}{\lim_{s \to 0} s^2 G(s)}$

• Acceleration constant $K_a = \lim_{s \to 0} s^2 G(s)$

System Type

We define *system type* to be the value of n in the denominator



Static error constants and system type

Input	Steady-state error formula	Type 0		Type 1		Type 2	
		Static error constant	Error	Static error constant	Error	Static error constant	Error
Step, $u(t)$	$\frac{1}{1+K_p}$	$K_p = \text{Constant}$	$\frac{1}{1+K_p}$	$K_p = \infty$	0	$K_p = \infty$	0
Ramp, $tu(t)$	$\frac{1}{K_v}$	$K_v = 0$	∞	$K_v = \text{Constant}$	$\frac{1}{K_v}$	$K_{v} = \infty$	0
Parabola, $\frac{1}{2}t^2u(t)$	$\frac{1}{K_a}$	$K_a = 0$	∞	$K_a = 0$	∞	$K_a = \text{Constant}$	$\frac{1}{K_a}$

Gain Design to Meet a Steady-State Error Specification

PROBLEM: Given the control system in Figure, find the value of K so that there is 10% error in the steady state.

$$\frac{R(s)}{-} + \underbrace{E(s)}_{-} \underbrace{\frac{K(s+5)}{s(s+6)(s+7)(s+8)}} C(s)$$

Review : Modeling

• System

Electrical system: Ohm's Law, Kirchhoff's Law

Mechanical system: Newton's Law

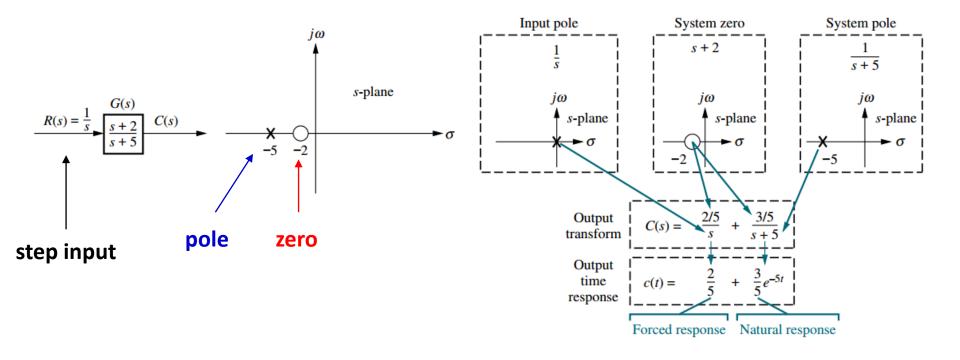
Electrical system + Mechanical system

= Electromechanical system (ex: Motor)

• System modeling

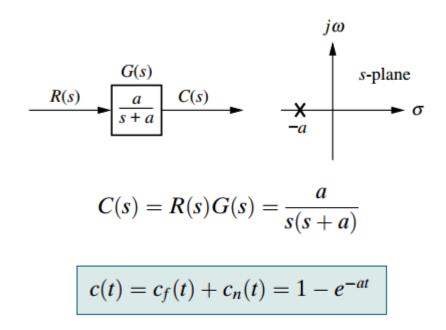
Modeling in the frequency domain time domain

Review : Poles, zeros, and system response

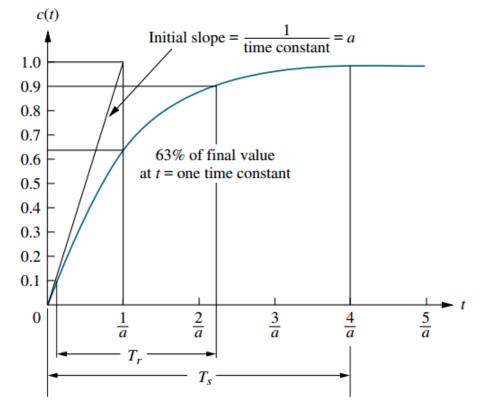


- Input poles: determine the form of the steady state response
- System poles: determines the form of the transient response

Review : First-order system

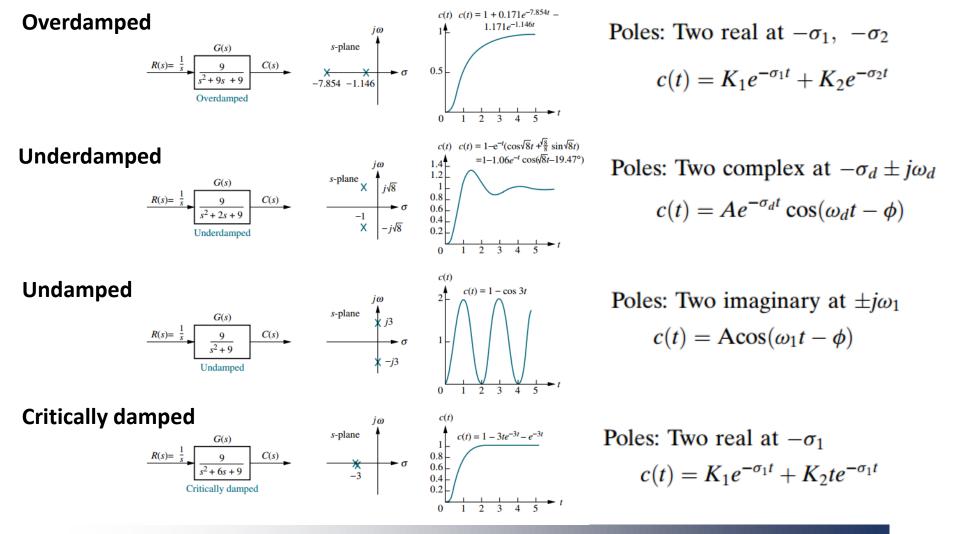


- 1. Time constant
- 2. Rise time
- 3. Settling time



Review : Second-order system

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$



Review : Time domain design specification

- Peak time: 1. $T_p = \frac{\pi}{\omega_d}$
- 2. Percent overshoot:

$$\%OS = e^{-(\zeta \pi/\sqrt{1-\zeta^2})} \times 100$$

3. Rise time:

$$\omega_n T_r = 1.76\zeta^3 - 0.417\zeta^2 + 1.039\zeta + 1$$

Settling time: 4.

