Modern Control Theory

Model Predictive Control (MPC)
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Introduction

[
Motivation

Model Predictive Control (MPC) is the most effective way to control optimization dealing with

constraints.

e pioneered by Richalet (1979) and Cutler & Ramaker (1979)

e well accepted by industry:

_ MPC can handle multivariable processes with large time-delays, non-minimum-phase,

unstable poles
_ easy concept, easy tuning
_ MPC can handle constraints, allows operation closer to constraints

- MPC can handle structure changes and actuator failures

e many successful applications have been reported
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Introduction

I
Ingredients of MPC:

- Process & disturbance model
- Performance index

- Constraint handling

- Optimization

- Receding horizon principle

Process & disturbance models:

The models applied in MPC serve two purposes:
e Prediction of the behavior of the future output of the process
on the basis of inputs and known disturbances applied to the process in the past

e Calculation of the input signal to the process that minimizes the given objective function

These models are not necessarily the same.

UNICON LAB, Unmanned & Intelligent systems Control Laboratory

INCHEON NATIONAL UNIVERSITY



Introduction

Process & disturbance models:
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These models are not necessarily the same.
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Introduction

Model assumptions: State space models:
e Linear e especially suited for MIMO systems
e Time-invariant e compact model description
e Discrete time e compact and low order controller
e Causal e computations are well conditioned
e Finite order e algorithms easy to implement

e State space description
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Introduction

Two types of IO models are applied:

e |nput-Output (I0) Model:

y(k) = G(z)u(k), G(z) strictly proper

e Increment-Input-Output (I10) Model:

where
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Standard performance index

The standard performance index at time k:

N,—1

Jw.k) = 3 2T (k+ jIR)Q0)E(E + k)

e Generalized predictive control (GPC) performance index

N, N.
J(Au, k) = Z i, (k + |k) — r(k + j|k) \2+)\QZ\Auk+3—1\k)\
J=Nm g=1

e Linear quadratic predictive control (LQPC) performance index

Np N.
J(u k)= > &' (k+jlk)Qa(k +jlk) + > u(k+j— 1|k)Ru(k + j — 1|k)
J=Nm 1=1
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Constraints

e [nequality constraints
Umin < U(k) < umaXAUmin < AU(]{) < AUmax

Ymin < y(k) < YmaxTmin < 37(]{7) < Tmax

Ak +j) bk +j) ¥j=0
e Equality constraints: motivated by control algorithm itself

Control horizon constraint: Au(k + j|k) = Ofor j > N,

The state end-point constraint: (k + N, |k) = x4,

~

Mo(k+7)=0 Yj>0
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Optimization

The MPC controller minimizes the standard performance index

N,—1
T=Y " 2"(k+ jlk)Q(i)2(k + jlk)

§=0
subject to the constraints
Ak +j) <b(k+7) Yj=0
Mo(k+j)=0 Vj=0
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Optimization

An optimization algorithm will be applied to compute a sequence of future control signals
that minimizes the performance index subject to the given constraints.
e For
- linear models
- linear constraints
- quadratic (2-norm) performance index

we can use quadratic programming algorithms.

e For 1-norm or oo-norm performance index: linear programming algorithms.

Both types of algorithms are convex and show fast convergence.
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Receding horizon principle

e attime k: Performance index .J (k) is minimized
e first element of optimal control sequence v(k) is applied to the system
e horizon shifted

e optimization restarted for time k + 1
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Model predictive control

Basics of MPC

Models

l

Performance index

Constraints

Standard MPC formulation

|

l

Solving the MPC problem

<

Quadratic Programming

Stability

Tunning

A 4

LMI-based Robust MPC

Simulation & Implementation
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Quadratic program

The general Quadratic program (QP) can be stated as

1
min.J(x) = §acTH.cr; +alf

x

subjectto  A;x =0;, 1 € Seq
A;x < bi7 1€ Sfmeq
where
H=H" n,byn, matrix,
f,x, A; vectors with n, elements

Seq and Smeq set of equality and inequality constraints, respectively

1€ Seq U S’ineq
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QP unconstrained

The objective function .J

1
J = §£CTH$+LETf

where

H = H" > 0and f are compatible matrix and vector

The necessary conditions for minimizing the objective function with equality constraints

Q:Haﬂrf:()
ox
CE*:—H_lf
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QP for equality constrains

The objective function .J and the constraints are expressed as

where

1
J=—alHx+2a2'f

2

Axr =0>

H=H" >0, f, Aand b are compatible matrices and vectors

b:

b;

c R"™®
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Lagrange multiplier @ = 7@ - ()

An objective function in n,. + ny variables x and A

1
J = §azTHaz +al f 4+ M (Ax — D)

The necessary conditions for minimizing the objective function with equality constraints

d.J

— =Hx+f+A"X=0
ox

0.J

—:A — —

B3 r—b=0

N=—(AH'"A"Y " Yo+ AH )
.CU* _ —H_l(f+AT)\*) :CE* _H—lAT)\* _ —H_lf—H_lAT)\*

Note: Correction by active constraints
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Lagrange Multipliers

Note:
Need 1y, ., (# equality constraints) < n, (# decision variables x) for feasibility
If ny.cq = N, the only feasible solution is the one that satisfies the constraints.

If ny.eq > Mo, then there is no feasible solution to satisfy the constraints, infeasible

OI|XA| CHOH 1
UNICON LAB, Unmanned & Intelligent systems Control Laboratory ' N U '—.'—ql.:" s



QP Inequality constraints

The objective function .J and the constraints are expressed as

where

1
J:§$TH$+LCTf
Ax <D

H = H" >0, f, Aand b are compatible matrices and vectors

E Rnb an,

b =

b;

c R"

UNICON LAB, Unmanned & Intelligent systems Control Laboratory



QP Inequality constraints

In the minimization with inequality constraints,

it is possible to have 1y (# constraints) > n.. (# decision variables)

The inequality constraints Ax < b may comprise active constraints and inactive constraints.

An inequality A;x < b; is said to be
active if A,z = b; and

inactive if A;x < b;

Ol %
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KKT conditions

Karush-Kuhn-Tucker conditions: Let & be a local minimum point for the problem

min  f(x)

st. h(x)=0, glx) <0

and suppose  is a regular point for the constraints (Vh(z) and Vg(x) are linearly
independent). Then there is a vector A and a vector ;1 > 0 such that

Vix)+ ' Vhiz)+ A'Vg(z) =0
Mg(z) =0
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KKT conditions

QP for inequality constraints:

1
flx) = 5:13TH:)3 + fle, glx)=Az—b<0

Vf(x) =V (%LETHIE + fo) —2TH+ 7

Vg(z) =V(Axr —b) = A

Hr+f+A"A=0

M(Az —b) =0
Ar —b <0
A>0
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KKT conditions

KKT conditions: The necessary condition for the QP problem with inequality constraints

Hr+ f+A"X=0

M (Az —b) =0
Ar — b <0
A >0

Note: Complementary slackness condition

Since A > 0and Az — b <0, M\ (Ax —b) = 0 is equivalent to the statement that
_ \; may be nonzero only if A;xz — b; = 0 (active)
_ A; > 0implies A;x — b; = 0O (active)
_ A;x — b; < 0 (inactive) implies \; = 0
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KKT conditions

The Kuhn-Tucker conditions define the active and inactive constraints in terms of the Lagrange
multipliers:

A; > 0: an active constraint, 4,2 —b; =0 7 € S,

A; = 0: aninactive constraint, A;x — b; <0 1 € S;paet

Note: AT)\ — ZiES >\1AZT — Aa,ctT)\act

act

If the active set were known, the original problem could be replaced by the corresponding
problem having equality constraints only:

Given A, .+ and b,.¢, the optimal solution has the closed-form (recall (2.3)):
Aact — _(AactH_lAgct)_l(bact T AactH_lf)
v=—HYf+AL _X\..)

act
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Active set method

Solution by iteration

At each iteration step of an algorithm,

_ Define the working set - a set of active constraints at the current point

S(Q) - Seq U S’éneq

act

- Redefine the working set S.;(fn)s if necessary: While moving on the working surface, add

new constraints to the working set, if a new constraint boundary is encountered.

_ Solve the equality constraint problem.
If all the Lagrange multipliers A\; > 0, then the point is a local soln. to the original

problem.
If there exists \; < 0, relax the constraint described by A; and b;: Delete it from the
constraint equation: A*A =3 o N AT

act
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Dual problem

In the active set methods, the active constraints need to be identified along with the optimal

decision variables.
Programming an active method is not straightforward.

If there are many constraints, the computational load is quite large.

Dual problem utilizes dual variables (Lagrangian multipliers)
to systematically identify the constraints that are not active that can then be eliminated.

—> very simple programming procedures for finding optimal solutions of

constrained minimization problems.
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Dual problem

Assuming feasibility (i.e., there is an x such that Ax < D), the primal problem is equivalent to

(1 T T
I/l’\lgé{mmlﬂ(Qa? Hx+ax f+ )\ (Ax b))

The minimization over x is unconstrained and is attained by

r=—H1(f+ AN

Substituting this leads to

1 _ - 1
—MNHN-Nf—=f"H!
1?3’3‘:( > f=gl 8
Equivalently
- N 7, Lor
I/\n>1£1<2)\ HA+ A f+2b H b
where

H=AH1'AT, f=AH'f+b

| IN'U 2E
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Dual problem

The dual objective function
1 _ - 1
J = §ATH)\ + A+ 5bTH—lb
The dual problem min>g J is also a QP problem with A as the decision variable.

The dual problem may be much easier to solve than the primal problem because the
constraints A > 0 are simpler

With the set of optimal Lagrange multipliers A, with corresponding constraints (treated as
equality constraints) described by A, . and b, the primal variable vector x is obtained
from

v=—H1'f—H 1A Xt

act

Equivalently, with A\; = 0 for inactive constraints,

vx=—H1f—H1AT)
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Dual problem

The dual variables will converge only if
the active constraints are linearly independent and

Ny qct (# active constraints) < n, (# decision variables).

When the conditions are satisfied, the one-dimensional search converges to the set of \*:

*

nact = O for inactive constraints

o = O for active constraints

The positive component collected as a vector is called A} ., with its value defined by

act

:,ct — (AactH_lAT )_1 (bact + AactH_lf)

—1
The existence of a set of bounded A, is determined by the existence of (Aqe H TAL )

which assures the convergence in the convex problem.
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Dual problem

The dual objective function

1. - _ 1
J = 5,\THA + AT+ 5bTH—lb

The necessary condition

oJ - =
—:H =
7 A+ =0

Given \*, we have
v =—H'(f+ A"\

Note:
H=AH"A" = [H;;| = [A,H'AT] >0
ﬁ” = A,,;H_lAiT > (0 forany A, # 0
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Models

State space models:
e especially suited for MIMO systems
e compact model description
e compact and low order controller
e computations are well conditioned

e algorithms easy to implement

¢ T
C|D

y(k) = G(q)u(k)

{x(k) = ba(k) + Tu(k)
G(q) = =C(¢g/—®)"'C+D :
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Models

e |nput-Output (10) Model:

y(k) = Gio(qu(k), G;,(q) strictly proper
.T?O(]n + 1) = (1)3‘01??;0(15) + FZ‘O’UJ(L‘Z)
y(‘l") — Oiox?lo(k)

e |ncrement-Input-Output (I10) Model:
y(k) = Giio(q)Au(k),  Giio(q) strictly proper
x,iio(k + 1) = (I)Z‘?;Of{i(k) + F?;?;OA’U,UC)
Zj(lv) = Cz:z‘oil?»a:z‘o(k)

where

Au(k) = (1 — g Hu(k) = u(k) — u(k — 1)
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Models

Relation 10 Model and 11O model:

Introduce a new state vector

y(k—1)
Liio =
AI@'O
and define the system matrices
I C;, 0
D0 = v Liio = , Chio = [I Cz-O]
0 (I)?lo Fio

then
Giiolq) = Gio(q)(1 —g~ ")~

o1k i
UNICON LAB, Unmanned & Intelligent systems Control Laboratory ' N U .'NT-;...:R\-E!-._!..EERSJ-.-V



Models

Advantage of Using IO models:

e.g. 1: Given an 10 system with ||G;,(1)|| < oo, minimize an |0-performance index
N—-1
T(k) = Y lly(k +d) = r(k + )| + A u(k + )|
i=0
Let rp = rss # 0 for B — oc.
Then using yss = G, (1)us, we find
Js.s — ||y.ss — Tss”Q + /\2||’u*.5:5||2
= [|Gio(1)uss — TS-S”Q + /\2”’11»53”2

ul (GT(1)Gi0(1) + N2T) uss — 2ul . GT (1)rgs + 710y

ol X okl
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Models

Minimizing .J,s over uss means that
tyw = (G ()G (1) + A1) GT (1)1,
Yas = Gio(1) (GT (1)Gio(1) + A1) " GT (1),

ltis clear that 1y, # 7, for A > 0

There will be a steady-state error

o1k i
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Models

e.g. 2: Given an l10 system G';,(q) = Gi0o(q)(1 — ¢=1) 7t with |G, (1) ]| < oc.
Minimize an [|O-performance index

N—1
J(k) =Y ly(k + i) —r(k + )| + X[ Au(k + i)||?

=0

Let (k) = 15 # 0 for B — o0.

Jss = ”yss - TSSHQ + )\2||At*{’53||2

Minimum Jss = 0 is reached for 155 = G,i_ol(l)rss which gives yss = 755 and Aug, = 0.

It is clear that ., = 74 forany A > 0.

There will be no steady-sate error

ol X okl
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Models

Standard state space model:

x(k+1)
(k)
y(k)

Assumptions:

— ($,I's) controllable, (P, C'y) observable
— (P, C) observable, (¢, 1" ) controllable
- Dy =0,D95 =0

T
Z1

z =
z2
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Models

The controlled variable:
= |A®] | )|
Zg(k) 1)12@(k)

2 (k)z(k) = 21 (k)21 (k) + 23 (k) 22(k) = 2" (k)C Cra(k) + v (k) DYy Disv(k)

1)12@(k)

clx(k)] _—

For tracking a reference trajectory r()
z1 (K

=™ =
Zg(k)

2 (k)z(k) = =] (k)21 (k) + 23 (k)za(k) = (Cra(k) = (k)" (Cra(k) —r(k))
+ 0" (k) Dy D1so(k)

Chx(k) —r(k)

l)lgv(k) 1)111U(k) ::‘—(jlmr(k) ::“T(k)

ol X okl
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Models

Lifting prediction and control:

e prediction

(k) = ; (k) =

e control
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Models

Optimization:

The MPC controller minimizes the standard performance index at time k:

Np—1
J=>" Tk +ilk)Qi)z(k +ilk)
i=0
where
1 (k4 |k
z(k+ilk) = "
k+z|h)

Q) = diag (21(2), Qa(7))
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